


Who am I
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Andrei Zissu

Worked in multiple industries over 2 decades, mostly in 
C++ and on Windows

Tech Lead at Morphisec, provider of anti-ransomware 
based on Automatic Moving Target Defense (AMTD)

WG21 member for the past 3 years, mainly involved in 
reflection and contracts

Disclaimer: The views expressed in this talk are mine and 
mine only (hopefully yours too by the time we’re done here)



Agenda

We can probably implement all type traits based on reflection

Reflection-based type traits are key to future decoupling between 
libraries and toolchains

A future where you are free to mix any compiler with any standard library 
implementation

Come with me on a journey to that future!
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Lay of the land

Intrinsic -> 
built-in, 
"magic“

Many 
standard 
concepts 

are built on 
top of type 

traits

Many type 
traits are 

built on top 
of compiler 

intrinsics

Libcxx

Accompanies 
clang

Libstd

Accompanies 
gcc

MSVC STL

Accompanies 
MS Visual 

Studio
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Introduction to 
Type Traits
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Boolean  
Query Traits
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is_const

is_lvalue_reference

is_integral

is_constructible

is_same

is_convertible



Type 
Transformations
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remove_cv

add_lvalue_reference

make_signed



Overall Implementation Strategies

Templates

Intrinsics

Mixed
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Template-based 
Implementations
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Basic Building Blocks: 
integral_constant, 
bool_constant
enable_if

22



std::integral_constant



std::true_type
std::false_type



std::bool_constant



std::enable_if



std::enable_if



std::enable_if

Substitution Failure Is Not An Error -
SFINAE
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Implementing 
helper variable 
templates



Struct Templates
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std::is_null_pointer (gcc)
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std::is_null_pointer (gcc)
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std::is_signed
(gcc)
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std::is_signed
(gcc)
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std::is_signed
(gcc)
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Variable Templates
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std::is_const
(msvc)
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std::is_const
(msvc)
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Type Traits 
Implemented via 

Compiler Internals
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Some code from 
the 3 big 
compilers/libraries
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clang 
(std::is_const)
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clang 
(std::is_enum)
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gcc

44



gcc
(std::is_reference)
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msvc
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msvc 
(is_member_function_pointer)
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And this is 
what 
_Is_memfunptr 
looks like…
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Some Graphs
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MSVC
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MSVC
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MSVC
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MSVC
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MSVC
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MSVC
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CLANG (libcxx)
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CLANG (libcxx)
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CLANG (libcxx)
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CLANG (libcxx)
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CLANG (libcxx)
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CLANG (libcxx)
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GCC (libstd)
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GCC (libstd)
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GCC (libstd)
64



GCC (libstd)
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GCC (libstd)
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GCC (libstd)
67



Comparative Analysis
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MSVC
69

• Rich (a.k.a complicated (convoluted?) template-based type traits
• Late comer into the intrinsics world



CLANG (libcxx)
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• Most heavily inclined towards intrinsics-based type traits
• Probably started like this from the get-go (just my conjecture) 



GCC (libstd)
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• Somewhat of a middle ground between clang and MSVC
• Increasingly dependent on intrinsics



Assumptions and Caveats

• Only intrinsics shown when 
alternative implementations exist

Intrinsic 
Implementations

• Analysis focused on standard 
type traits

Standard Type 
Traits Focus

• Intermediate templates not 
shownSimplified Details

• Focused mainly on is_xxx traits
Covered only ~half 
the standard type 

traits

• Because I’m only humanPotential Errors
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Cross-
Toolchain 
Support

• MSVC -> clang

• Libcxx (clang) -> gcc
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Recap - Drawbacks and 
Limitations of Current Type 
Trait Implementations

• Presumably hard to maintain
• Long cryptic compilation errors 

(concepts only partly to the rescue)

Complicated, hard 
to follow, logical 

programming style

• The composite ones may often 
require maintenance

Template-based 
ones likely slow to 

compile

• e.g.: is_implicit_lifetime (P2674)
• Magic wands often trivially and 

portably implementable via reflection

Some traits require 
"magic"
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Static Reflection
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• What do we mean by “static”?
• Static = compile time
• Dynamic reflection is more 

prevalent in other languages
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Current State

Key Features Approved for C++26

1. Approved in plenary with value-based 
approach (P2996)

2. Includes introspection but excludes 
injection (except splicing and 
define_aggregate)

3. No AST modifications; reflection uses pure 
value semantics

4. Expansion statements (template for) also 
approved (P1306)
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Current State

Key Points About std::meta::info

1. Relies on std::meta::info - opaque type 

2. Motivated by future compatibility with C++ 
type model

3. Future type-full wrapper libraries?
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std::meta::info
79



std::meta::info
80



Some Examples from P2996

• Back-And-Forth
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Some Examples from P2996

• Back-And-Forth
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Some Examples from P2996

• Back-And-Forth
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Oops - should actually be 
[:r:]



Some Examples from P2996

• Back-And-Forth
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Some Examples from P2996

• Selecting Members
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Some Examples from P2996

• Selecting Members
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Some Examples from P2996

• Selecting Members
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Some Examples from P2996

• List of Types to List of Sizes
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Some Examples from P2996

• Enum to String
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The Discarded Candidate – Type-Based 
Reflection

Challenges of Value-Based Reflection
1.Type hierarchy (rather than meta::info values)
2.Offers a complex OO API
3.Likely hard on build times and memory usage
4.May hinder future language scheme changes
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Reflection and 
Type Traits
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• Can we use reflection to yank intrinsics out of  
standard traits implementations? 

92



Perhaps… 
Probably… 
Mostly…
• Conceptual POC 
(Bloomberg 
experimental P2996 
GCC fork on Godbolt)
• Aided by MS Copilot + 
Think Deeper 
• ~half the current 
standard type traits 
implemented, with no 
stdlib dependencies
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https://compiler-explorer.com/z/4cn5j45Gv
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Should we implement all type 
traits based on reflection?

• Definitely worth looking into

• Should be faster than complex template-
based implementations

• But possibly a little slower than direct intrinsics 
invocations (due to the added thin template layer)

• Code would be trivial where matching 
reflection traits exist

• That’s the low hanging fruit we should start with

• Not doing this would create 2 sources of truth
• Which might diverge if either one is buggy
• “In terms of” rocks! 
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Summary and 
Future 

Directions
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TLDR

• Type traits are mostly implemented via compiler 
intrinsics, but often still via highly complex and long-
building template shenanigans

• Value-based (std::meta::info) static reflection is coming 
in C++26 
• Initially without code injection, only with splicing

• Many type traits are directly implementable via 
reflection metafunctions
• Rather than templates and compiler intrinsics

• Which begs the question…
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Can we have standard library 
implementations completely 
independent from toolchains?

<meta> will have to be compiler-specific
• An always non-portable part of the standard library
• May have to use bespoke utilities in order to avoid 

cyclic dependencies.
• Example of a <meta> implementation - from the 

Bloomberg clang P2996 fork:
• https://github.com/bloomberg/clang-

p2996/blob/p2996/libcxx/include/meta
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Key Takeaway

100

Reflection-based type traits are key to future 
decoupling between libraries and toolchains

• If that’s what we want
• Possible motivation: combining different vendors’ 

strengths and velocities in implementing new C++ 
standards

• Additional motivation: single source of truth
• We can get there gradually by ever-increasing the portable 

parts, ultimately being left only with <meta> and a few 
other performance-heavy vendor-specific parts
• Which would also be standardized, but wouldn’t have 

portable implementations
• Disclaimer – These are my own opinions. Cross-compiler 

portability of the standard library is currently not a stated 
goal of WG21.



Thank You for 
joining me in my 
reflections on 
the future!

101

Stay in touch!
andrziss@gmail.com
https://www.linkedin.com/in/andreizissu/

Questions?

mailto:andrziss@gmail.com
https://www.linkedin.com/in/andreizissu/
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