

Who am I

2

Andrei Zissu

Worked in multiple industries over 2 decades, mostly in
C++ and on Windows

Tech Lead at Morphisec, provider of anti-ransomware
based on Automatic Moving Target Defense (AMTD)

WG21 member for the past 3 years, mainly involved in
reflection and contracts

Disclaimer: The views expressed in this talk are mine and
mine only (hopefully yours too by the time we’re done here)

Agenda

We can probably implement all type traits based on reflection

Reflection-based type traits are key to future decoupling between
libraries and toolchains

A future where you are free to mix any compiler with any standard library
implementation

Come with me on a journey to that future!

3

Lay of the land

Intrinsic ->
built-in,
"magic“

Many
standard
concepts

are built on
top of type

traits

Many type
traits are

built on top
of compiler

intrinsics

Libcxx

Accompanies
clang

Libstd

Accompanies
gcc

MSVC STL

Accompanies
MS Visual

Studio

4

Introduction to
Type Traits

5

6

7

8

9

10

11

12

13

14

15

16

17

Boolean
Query Traits

18

is_const

is_lvalue_reference

is_integral

is_constructible

is_same

is_convertible

Type
Transformations

19

remove_cv

add_lvalue_reference

make_signed

Overall Implementation Strategies

Templates

Intrinsics

Mixed

20

Template-based
Implementations

21

Basic Building Blocks:
integral_constant,
bool_constant
enable_if

22

std::integral_constant

std::true_type
std::false_type

std::bool_constant

std::enable_if

std::enable_if

std::enable_if

Substitution Failure Is Not An Error -
SFINAE

29

Implementing
helper variable
templates

Struct Templates

31

std::is_null_pointer (gcc)

32

std::is_null_pointer (gcc)

33

std::is_signed
(gcc)

34

std::is_signed
(gcc)

35

std::is_signed
(gcc)

36

Variable Templates

37

std::is_const
(msvc)

38

std::is_const
(msvc)

39

Type Traits
Implemented via

Compiler Internals

40

Some code from
the 3 big
compilers/libraries

41

clang
(std::is_const)

42

clang
(std::is_enum)

43

gcc

44

gcc
(std::is_reference)

45

msvc

46

msvc
(is_member_function_pointer)

47

And this is
what
_Is_memfunptr
looks like…

48

Some Graphs

49

MSVC
50

MSVC
51

MSVC
52

MSVC
53

MSVC
54

MSVC
55

CLANG (libcxx)
56

CLANG (libcxx)
57

CLANG (libcxx)
58

CLANG (libcxx)
59

CLANG (libcxx)
60

CLANG (libcxx)
61

GCC (libstd)
62

GCC (libstd)
63

GCC (libstd)
64

GCC (libstd)
65

GCC (libstd)
66

GCC (libstd)
67

Comparative Analysis

68

MSVC
69

• Rich (a.k.a complicated (convoluted?) template-based type traits
• Late comer into the intrinsics world

CLANG (libcxx)
70

• Most heavily inclined towards intrinsics-based type traits
• Probably started like this from the get-go (just my conjecture)

GCC (libstd)
71

• Somewhat of a middle ground between clang and MSVC
• Increasingly dependent on intrinsics

Assumptions and Caveats

• Only intrinsics shown when
alternative implementations exist

Intrinsic
Implementations

• Analysis focused on standard
type traits

Standard Type
Traits Focus

• Intermediate templates not
shownSimplified Details

• Focused mainly on is_xxx traits
Covered only ~half
the standard type

traits

• Because I’m only humanPotential Errors

72

Cross-
Toolchain
Support

• MSVC -> clang

• Libcxx (clang) -> gcc

73

Recap - Drawbacks and
Limitations of Current Type
Trait Implementations

• Presumably hard to maintain
• Long cryptic compilation errors

(concepts only partly to the rescue)

Complicated, hard
to follow, logical

programming style

• The composite ones may often
require maintenance

Template-based
ones likely slow to

compile

• e.g.: is_implicit_lifetime (P2674)
• Magic wands often trivially and

portably implementable via reflection

Some traits require
"magic"

74

Static Reflection

75

• What do we mean by “static”?
• Static = compile time
• Dynamic reflection is more

prevalent in other languages

76

Current State

Key Features Approved for C++26

1. Approved in plenary with value-based
approach (P2996)

2. Includes introspection but excludes
injection (except splicing and
define_aggregate)

3. No AST modifications; reflection uses pure
value semantics

4. Expansion statements (template for) also
approved (P1306)

77

Current State

Key Points About std::meta::info

1. Relies on std::meta::info - opaque type

2. Motivated by future compatibility with C++
type model

3. Future type-full wrapper libraries?

78

std::meta::info
79

std::meta::info
80

Some Examples from P2996

• Back-And-Forth

81

Some Examples from P2996

• Back-And-Forth

82

Some Examples from P2996

• Back-And-Forth

83

Oops - should actually be
[:r:]

Some Examples from P2996

• Back-And-Forth

84

Some Examples from P2996

• Selecting Members

85

Some Examples from P2996

• Selecting Members

86

Some Examples from P2996

• Selecting Members

87

Some Examples from P2996

• List of Types to List of Sizes

88

Some Examples from P2996

• Enum to String

89

The Discarded Candidate – Type-Based
Reflection

Challenges of Value-Based Reflection
1.Type hierarchy (rather than meta::info values)
2.Offers a complex OO API
3.Likely hard on build times and memory usage
4.May hinder future language scheme changes

90

Reflection and
Type Traits

91

• Can we use reflection to yank intrinsics out of
standard traits implementations?

92

Perhaps…
Probably…
Mostly…
• Conceptual POC
(Bloomberg
experimental P2996
GCC fork on Godbolt)
• Aided by MS Copilot +
Think Deeper
• ~half the current
standard type traits
implemented, with no
stdlib dependencies

93

https://compiler-explorer.com/z/4cn5j45Gv

94

95

Should we implement all type
traits based on reflection?

• Definitely worth looking into

• Should be faster than complex template-
based implementations

• But possibly a little slower than direct intrinsics
invocations (due to the added thin template layer)

• Code would be trivial where matching
reflection traits exist

• That’s the low hanging fruit we should start with

• Not doing this would create 2 sources of truth
• Which might diverge if either one is buggy
• “In terms of” rocks!

96

Summary and
Future

Directions

97

TLDR

• Type traits are mostly implemented via compiler
intrinsics, but often still via highly complex and long-
building template shenanigans

• Value-based (std::meta::info) static reflection is coming
in C++26
• Initially without code injection, only with splicing

• Many type traits are directly implementable via
reflection metafunctions
• Rather than templates and compiler intrinsics

• Which begs the question…

98

Can we have standard library
implementations completely
independent from toolchains?

<meta> will have to be compiler-specific
• An always non-portable part of the standard library
• May have to use bespoke utilities in order to avoid

cyclic dependencies.
• Example of a <meta> implementation - from the

Bloomberg clang P2996 fork:
• https://github.com/bloomberg/clang-

p2996/blob/p2996/libcxx/include/meta

99

Key Takeaway

100

Reflection-based type traits are key to future
decoupling between libraries and toolchains

• If that’s what we want
• Possible motivation: combining different vendors’

strengths and velocities in implementing new C++
standards

• Additional motivation: single source of truth
• We can get there gradually by ever-increasing the portable

parts, ultimately being left only with <meta> and a few
other performance-heavy vendor-specific parts
• Which would also be standardized, but wouldn’t have

portable implementations
• Disclaimer – These are my own opinions. Cross-compiler

portability of the standard library is currently not a stated
goal of WG21.

Thank You for
joining me in my
reflections on
the future!

101

Stay in touch!
andrziss@gmail.com
https://www.linkedin.com/in/andreizissu/

Questions?

mailto:andrziss@gmail.com
https://www.linkedin.com/in/andreizissu/

	Foreword
	Slide 1
	Slide 2: Who am I
	Slide 3: Agenda
	Slide 4: Lay of the land

	Introduction to Type Traits
	Slide 5: Introduction to Type Traits
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Boolean Query Traits
	Slide 19: Type Transformations
	Slide 20: Overall Implementation Strategies

	Template-based Implementations
	Slide 21: Template-based Implementations
	Slide 22: Basic Building Blocks: integral_constant, bool_constant enable_if
	Slide 23: std::integral_constant
	Slide 24: std::true_type std::false_type
	Slide 25: std::bool_constant
	Slide 26: std::enable_if
	Slide 27: std::enable_if
	Slide 28: std::enable_if
	Slide 29
	Slide 30: Implementing helper variable templates
	Slide 31: Struct Templates
	Slide 32: std::is_null_pointer (gcc)
	Slide 33: std::is_null_pointer (gcc)
	Slide 34: std::is_signed (gcc)
	Slide 35: std::is_signed (gcc)
	Slide 36: std::is_signed (gcc)
	Slide 37: Variable Templates
	Slide 38: std::is_const (msvc)
	Slide 39: std::is_const (msvc)

	Type traits implemented via compiler internals
	Slide 40: Type Traits Implemented via Compiler Internals
	Slide 41: Some code from the 3 big compilers/libraries
	Slide 42: clang (std::is_const)
	Slide 43: clang (std::is_enum)
	Slide 44: gcc
	Slide 45: gcc (std::is_reference)
	Slide 46: msvc
	Slide 47: msvc (is_member_function_pointer)
	Slide 48: And this is what _Is_memfunptr looks like…
	Slide 49: Some Graphs
	Slide 50: MSVC
	Slide 51: MSVC
	Slide 52: MSVC
	Slide 53: MSVC
	Slide 54: MSVC
	Slide 55: MSVC
	Slide 56: CLANG (libcxx)
	Slide 57: CLANG (libcxx)
	Slide 58: CLANG (libcxx)
	Slide 59: CLANG (libcxx)
	Slide 60: CLANG (libcxx)
	Slide 61: CLANG (libcxx)
	Slide 62: GCC (libstd)
	Slide 63: GCC (libstd)
	Slide 64: GCC (libstd)
	Slide 65: GCC (libstd)
	Slide 66: GCC (libstd)
	Slide 67: GCC (libstd)
	Slide 68: Comparative Analysis
	Slide 69: MSVC
	Slide 70: CLANG (libcxx)
	Slide 71: GCC (libstd)
	Slide 72: Assumptions and Caveats
	Slide 73: Cross-Toolchain Support
	Slide 74: Recap - Drawbacks and Limitations of Current Type Trait Implementations

	Static Reflection
	Slide 75: Static Reflection
	Slide 76
	Slide 77: Current State
	Slide 78: Current State
	Slide 79: std::meta::info
	Slide 80: std::meta::info
	Slide 81: Some Examples from P2996
	Slide 82: Some Examples from P2996
	Slide 83: Some Examples from P2996
	Slide 84: Some Examples from P2996
	Slide 85: Some Examples from P2996
	Slide 86: Some Examples from P2996
	Slide 87: Some Examples from P2996
	Slide 88: Some Examples from P2996
	Slide 89: Some Examples from P2996
	Slide 90: The Discarded Candidate – Type-Based Reflection

	Reflection and Type Traits
	Slide 91: Reflection and Type Traits
	Slide 92
	Slide 93: Perhaps… Probably… Mostly…
	Slide 94
	Slide 95
	Slide 96: Should we implement all type traits based on reflection?

	Summary and Future Directions
	Slide 97: Summary and Future Directions
	Slide 98: TLDR
	Slide 99: Can we have standard library implementations completely independent from toolchains?
	Slide 100: Key Takeaway
	Slide 101: Thank You for joining me in my reflections on the future!

